Abstract

AbstractThis Feature Article aims to provide an in‐depth overview of the recently developed molding technologies termed capillary force lithography (CFL) that can be used to control the cellular microenvironment towards cell and tissue engineering. Patterned polymer films provide a fertile ground for controlling various aspects of the cellular microenvironment such as cell–substrate and cell–cell interactions at the micro‐ and nanoscale. Patterning thin polymer films by molding typically involves several physical forces such as capillary, hydrostatic, and dispersion forces. If these forces are precisely controlled, the polymer films can be molded into the features of a polymeric mold with high pattern fidelity and physical integrity. The patterns can be made either with the substrate surface clearly exposed or unexposed depending on the pattern size and material properties used in the patterning. The former (exposed substrate) can be used to adhere proteins or cells on pre‐defined locations of a substrate or within a microfluidic channel using an adhesion‐repelling polymer such as poly(ethylene glycol) (PEG)‐based polymer and hyaluronic acid (HA). Also, the patterns can be used to co‐culture different cells types with molding‐assisted layer‐by‐layer deposition. In comparison, the latter (unexposed substrate) can be used to control the biophysical surrounding of a cell with tailored mechanical properties of the material. The surface micropatterns can be used to engineer cellular and multi‐cellular architecture, resulting in changes of the cell shape and the cytoskeletal structures. Also, the nanoscale patterns can be used to affect various aspects of the cellular behavior, such as adhesion, proliferation, migration, and differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.