Abstract
We consider the quasistationary Stokes flow that describes the motion of a two-dimensional fluid body under the influence of surface tension effects in an unbounded, infinite-bottom geometry. We reformulate the problem as a fully nonlinear parabolic evolution problem for the function that parameterizes the boundary of the fluid with the nonlinearities expressed in terms of singular integrals. We prove well-posedness of the problem in the subcritical Sobolev spaces Hs(R)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H^s(\\mathbb {R})$$\\end{document} up to critical regularity, and establish parabolic smoothing properties for the solutions. Moreover, we identify the problem as the singular limit of the two-phase quasistationary Stokes flow when the viscosity of one of the fluids vanishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.