Abstract

Few studies have focused on the capacity of lactic acid bacteria in utilizing soybean carbohydrates by genetic and phenotypic approaches. In the current study, genetic and phenotypic characteristics of soybean carbohydrate metabolism in Leuconostoc mesenteroides, Lactococcus lactis and Streptococcus thermophilus were investigated. The results indicated that all the 3 species have the potential capacity to utilize sucrose with a sucrose phosphoenolpyruvate-dependent phosphotransferase system (PTS) pathway mainly consisted of scrA, sacA, scrK and scrR. Among the 15 strains, only 1 L. lactis strain possessed both sucrose permease and PTS pathway. On the other hand, only Leu. mesenteroides among the 3 species have the genes related to α-galactosidases for potential capacity to metabolize raffinose-family oligosaccharides (RFO) in soybean. Four Leu. mesenteroides strains, DQHXN_Q03M16, FSDLZ60M2, DSCAB2M6 and DQHXN_Q38M5, possessed the complete α-galactosidases gene clusters of lacS-galA-galK-galT and high α-galactosidases activity, which contributed to the capacity of these strains to utilize RFO. These findings provide an approach to investigate the genetic and the phenotypic characteristics of Leu. mesenteroides, L. lactis and S. thermophilus in soybean carbohydrate metabolism for suitable strain selection in soybean fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.