Abstract

Permanent magnet synchronous machines are utilized in a wide variety of applications due to their many desirable characteristics, including high torque density capability and high efficiency. In the near future, however, the demand for the permanent magnet rare earth materials is projected to exceed world production. As a result, electric machines which do not rely on rare earth materials, such as wound field synchronous machines (WFSMs), are receiving renewed attention for use in traction and wind energy applications. However, WFSMs require a current delivery mechanism to the rotor such as mechanical slip rings whose components require periodic replacement and generate adverse debris within the machine enclosure. Rotary transformers may replace slip rings but also introduce rotor speed dependencies and magnetic coupling difficulties. This paper proposes a capacitive non-contact power transfer technique to eliminate the need for mechanical slip rings while also avoiding the pitfalls of rotating transformer technologies. The capacitive power transfer system is compared to traditional rotor power coupling techniques and its performance is validated with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call