Abstract

Self-assembled monolayers of ω-mercaptohexadecanoic acid and ω-mercaptohexadecylamine on gold electrodes are stable at neutral pH and display pure capacitive behavior at frequencies around 20 Hz. Different methods of covalent immobilization of proteins on these monolayers are compared. Various reagents including succinimides, thionylchloride, p-nitrophenol and carbodiimides were used to activate the carboxy groups of the adsorbed monolayer of ω-mercaptohexadecanoic acid. Glutaraldehyde, cyanuric chloride and phenylene diisocyanate were used to activate the amino groups of the monolayer of ω-mercaptohexadecylamine. The immobilization of albumin on the activated surface was studied by capacitive measurements. The N-hydroxysuccinimide and carbodiimide methods were identified as most suitable for protein immobilization in that they did not compromise the insulating properties of the alkylthiol layer and led to maximal increase of its dielectric thickness. These approaches were used for a layer-by-layer preparation of a capacitive immunosensor. Specifically, antibodies to human serum albumin were immobilized on the alkylthiol monolayer. Binding of the antigen led to a decrease of the electrode capacitance. The detection limit of the immunosensor is as low as 15 nM (1 mg/l).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.