Abstract
The capacitance-voltage (C-V) characteristics of thin films of ZrO2 deposited by thermal metal-organic chemical vapour deposition (MOCVD) have been analyzed. The films were grown at three different temperatures (500, 550 and 600 ºC) and 1 mbar pressure from a novel monomeric zirconium amide-guanidinate complex [Zr(NEtMe)2(guanidinate)2]. The true capacitance was determined from measurements made at different frequencies in order to account for the series and shunt parasitic resistances during C-V measurements. Films grown at 500 and 550 ºC showed no hysteresis while those grown at 600 ºC exhibited a very small hysteresis window ≈0.16 V for O2 flow of 100 sccm and ≈0.19 V for 50 sccm O2 flow. A very small voltage shift is also obtained for the device under 10 hr voltage stress. These preliminary in-depth electrical results suggest that quality ZrO2 can be grown from the novel [Zr(NEtMe)2(guanidinate)2] complex precursor paving the way for their use as future gate dielectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.