Abstract

A simple method for computing the minimum value of capacitance, C min. required for initiating voltage build-up in a three-phase self-excited induction generator (SEIG) is presented. Based on the steady-state equivalent circuit model, a consideration of the circuit conductances yields a sixth-degree polynomial in the per-unit frequency. The polynomial can be solved for real roots, which enables the value of C/sub min/ to be calculated. Critical values of load impedance and speed, below which the machine fails to self-excite irrespective of the capacitance used, are found to exist. Closed form solutions for C/sub min/ are derived for no-load and inductive loads. Using the same numerical approach, an interative procedure is developed for predicting the capacitance required for maintaining the terminal voltage at a preset value when the generator is supplying load. Experimental results obtained on a 2 kW induction machine confirm the feasibility and accuracy of the proposed methods.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.