Abstract

In this paper, the practical impedance approach steady-state analysis in the frequency domain of the three-phase self-excited induction generator (SEIG) with squirrel cage rotor is presented along with its operating performance evaluations. The three-phase SEIG is driven by a variable-speed prime mover (VSPM) such as a wind turbine for the clean alternative renewable energy in rural areas. The basic steady-state characteristics of the VSPM are considered in the three-phase SEIG approximate electro-mechanical equivalent circuit and the operating performances of the three-phase SEIG coupled by a VSPM in the steady-state analysis are evaluated and discussed on line under the conditions related to the speed changes of the prime mover and the electrical inductive load power variations with simple computation processing procedures. A three-phase SEIG prototype setup with a VSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental performance results give good agreements with those ones obtained from the simulation results. Furthermore, a PI controlled feedback closed-loop voltage regulation of the three-phase SEIG driven by the VSPM on the basis of the static VAr compensator (SVC) composed of the thyristor phase controlled reactor (TCR) in parallel with the thyristor switched capacitor (TSC) and the fixed excitation capacitor bank (FC) is designed and considered for the wind generation as a renewable power conditioner. The simulation analysis and experimental results obtained from the three-phase SEIG with SVC for its voltage regulation prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in the steady-state operations in terms of the fast response and the high performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.