Abstract
Using an integral transform, the mixed boundary value problem of a conducting, elliptical disk on a dielectric half-space in an electric field is reduced to the solution of an integral equation. An analytical expression of the electric system capacitance is derived, which is a function of the eccentricity of the elliptical disk. The electric charge and electric stress distribute non-uniformly over the surface of the elliptical disk and display local singularities at the edge of the elliptical disk. The square root singularity of the electric field at the edge of the elliptical disk leads to the divergent of the resultant force on the elliptical disk, which is physically unrealistic. There likely exist geometrical constraint and/or field constraint to limit the presence of the square root singularity of the electric field. For any symmetric conductor in an infinite space that consists of air (vacuum) and a semi-infinite dielectric material with symmetric plane being in the interface between the air and the dielectric material, the electric potential in the space is independent of the dielectric constant of the dielectric material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.