Abstract

The image reconstruction of flowing charged particles in gas-solid two-phase (GSTP) flow can be achieved through electrostatic tomography (EST). Accurate image reconstruction is crucial for detecting the movement patterns of the particles. In order to improve the quality of reconstructed images, a unique convolutional autoencoder neural network (CANN) is proposed. This study uses an image set generated by the linear backprojection (LBP) algorithm to train the CANN, which consists of an encoder and a decoder. The encoder utilizes convolutional and max-pooling layers to reduce the dimensionality of the images and extract key features, while the decoder restores and reconstructs the images through up-sampling and convolutional operations to closely approximate the reference image. To prevent overfitting, dropout layers are introduced after each max-pooling layer in the encoder. To verify the anti-noise capability of the network, Gaussian white noise ranging from 10 dB to 20 dB is added to the test set. The proposed CANN has been validated through simulations and experiments, demonstrating its effectiveness in overcoming noticeable artifacts and noise in reconstructed images when identifying GSTP flow patterns. Furthermore, it shows significant enhancements in imaging outcomes compared to conventional image reconstruction techniques and some current deep learning algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.