Abstract

In order to fulfill the ever-increasing demand for high-speed and high-bandwidth, wireless-based MCSoC is presented based on a NoC communication infrastructure. Inspiring the separation between the communication and the computation demands as well as providing the flexible topology configurations, makes wireless-based NoC a promising future MCSoC architecture. However, congestion occurrence in wireless routers reduces the benefit of high-speed wireless links and significantly increases the network latency. Therefore, in this paper, a congestion-aware platform, named CAP-W, is introduced for wireless-based NoC in order to reduce congestion in the network and especially over wireless routers. The triple-layer platform of CAP-W is composed of mapping, migration, and routing layers. In order to minimize the congestion probability, the mapping layer is responsible for selecting the suitable free core as the first candidate, finding the suitable first task to be mapped onto the selected core, and allocating other tasks with respect to contiguity. Considering dynamic variation of application behaviors, the migration layer modifies the primary task mapping to improve congestion situation. Furthermore, the routing layer balances utilization of wired and wireless networks by separating short-distance and long-distance communications. Experimental results show meaningful gain in congestion control of wireless-based NoC compared to state-of-the-art works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call