Abstract
We present a vibrational energy harvester with fluorinated ethylene propylene (FEP)-ferroelectrets working in d31 mode. The ferroelectret film consists of two FEP films, fused together to form a parallel tunnel structure with well-defined air gaps. Its dynamic piezoelectric g31 coefficient is 0.7 V m N−1. The energy-harvesting device is an air-spaced cantilever arrangement that was produced by the additive manufacturing technique. The device was tested by exposing it to sinusoidal vibrations with an acceleration a, generated by a shaker. The measurement shows a resonance at about 35 Hz and a normalized output power of 320 μW for a seismic mass of 4.5 g at an acceleration of 0.1 g (g is the gravity of the earth). This demonstrates a significant improvement of air-spaced vibrational energy harvesting with ferroelectrets and greatly exceeds previous performance data for polymer cantilever devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.