Abstract

Compared to the currently available therapeutic drugs for peripheral vascular diseases, agents that are selective for relaxing pulmonary circulation are scarce. The present study was undertaken, using isometric tension change measurement and whole-cell patch-clamp electrophysiology methods, to evaluate the vascular relaxation effect and the underlying mechanisms involved of two naturally found alkaloids: paeonol (2-hydroxy-4-methoxy-acetophenone), acetovanillone (4-hydroxy-3-methoxy-acetophenone) and the non-substituted analogue acetophenone on pulmonary artery of Sprague-Dawley rats. Cumulative administration (3 μM–1 mM) of acetophenone analogues resulted in a concentration-dependent relaxation of phenylephrine (1 μM) pre-contracted pulmonary artery. A relative order of inhibitory potency, estimated by comparing the concentration at which a 50% relaxation of phenylephrine-induced contraction observed was: acetovanillone > paeonol > acetophenone. Endothelial denudation and inhibition of nitric oxide synthase (with 20 μM NG-nitro-l-arginine methyl-ester) only moderately suppressed (17.6 ± 4.2%) acetovanillone- but not paeonol- or acetophenone-mediated maximum relaxation. Glibenclamide (3 μM, an ATP-sensitive K+ (IKATP) channel blocker) markedly attenuated all acetophenone analogues-mediated endothelium-independent relaxation. Neither cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL 12330A, 10 μM), iberiotoxin (300 nM), 4-aminopyridine (3 mM), (±)-propranolol (1 μM, a non-selective β-adrenoceptor blocker) nor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (3 μM, a guanylate cyclase inhibitor) altered endothelium-independent relaxation. In electrophysiological experiments using single pulmonary artery smooth muscle cells, acetovanillone, paeonol, acetophenone and cromakalim activated glibenclamide-sensitive, IKATP channels. In conclusion, our results demonstrate that acetophenone analogues caused pulmonary artery relaxation through opening of IKATP channels. In addition, acetovanillone-mediated pulmonary artery relaxation is partly depended on nitric oxide released from endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.