Abstract
A set of stable canonical equations of second order is derived, which describe the propagation of almost periodic waves in the horizontal plane, including weakly nonlinear interactions. The derivation is based on the Hamiltonian theory of surface waves, using an extension of the Ritz variational method. For waves of infinitesimal amplitude the well-known linear refraction-diffraction model (the mild-slope equation) is recovered. In deep water the nonlinear dispersion relation for Stokes waves is found. In shallow water the equations reduce to Airy's nonlinear shallow-water equations for very long waves. Periodic solutions with steady profile show the occurrence of a singularity at the crest, at a critical wave height.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have