Abstract
Background: The underlying pathomechanism of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is the immune response to inflammation or infection within the pulmonary microcirculation. Systemic spread of pathogens, activated immune cells, and inflammatory mediators contributes significantly to mortality in patients with ARDS. Objective: The endogenous cannabinoid system is a major modulator of the immune response during inflammation and infection. Phytocannabinoids, such as cannabidiol (CBD), have shown promising anti-inflammatory effects in several pathologies. The overall objective of this study was to evaluate the effects of CBD on local and systemic inflammation in endotoxin-induced ALI in mice. Materials and Methods: ALI was induced by pulmonary endotoxin challenge. Four groups of male C57BL/6 mice were randomized in this study: control, ALI, ALI with CBD treatment, and control with CBD treatment. Analyses of local and systemic cytokine levels, lung histology, and leukocyte activation as visualized by intravital microscopy of the intestinal and pulmonary microcirculation were performed 6 h following intranasal endotoxin administration. Results: Pulmonary endotoxin challenge induced significant inflammation evidenced by local and systemic cytokine and chemokine release, lung histopathology, and leukocyte adhesion. Intraperitoneal CBD treatment resulted in a significant decrease in systemic inflammation as shown by reduced leukocyte adhesion in the intestinal microcirculation and reduced plasma cytokine and chemokine levels. Pulmonary chemokine levels were decreased, while pulmonary cytokine levels were unchanged. Surprisingly, the ALI score was slightly increased by CBD treatment in a manner driven by enhanced neutrophil infiltration of the alveoli. Conclusion: In this model of experimental ALI, CBD administration was associated with reduced systemic inflammation and heterogeneous effects on pulmonary inflammation. Future studies should explore the mechanisms involved as they relate to neutrophil infiltration and proinflammatory mediator production within the lungs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.