Abstract
Knowledge about exposure to cannabidiol (CBD) in breastfed infants can provide an improved understanding of potential risk. The aim was to predict CBD exposure in breastfed infants from mothers taking CBD and CBD-containing products. Cannabidiol concentrations in milk previously attained from data collected through an existing human milk research biorepository were used to simulate infant doses and identify subgroups. A developed pediatric physiologically based pharmacokinetic model produced virtual breastfed infants administered the simulated CBD doses. Predicted breastfed infant exposures and upper area under the curve ratios were compared to the lowest therapeutic dose for approved indications in children. The existing human milk research biorepository contained 200 samples from 181 unique breastfeeding mothers for whom self-reported administration data and CBD concentrations had previously been measured. Samples that were above the lower limit of quantification with only one maternal administration typerevealed that administration type, i.e., joint/blunt or edible versus oil or pipe, resulted in significantly different subgroups in terms of milk concentrations. Resulting simulated infant doses (ng/kg) were described by lognormal distributions with geometric means and geometric standard deviations: 0.61 ± 2.41 all concentrations, 0.10 ± 0.37 joint/blunt or edible, and 2.23 ± 8.15 oil or pipe. Doses administered to breastfed infants had exposures magnitudes lower than exposures in children aged 4-11 years administered the lowest therapeutic dose for approved indications, and low upper area under the curve ratios. Based on real-world use, breastfeeding infants are predicted to receive very small exposures of CBD through milk. Studies examining adverse reactions will provide further insight into potential risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.