Abstract

Canine infectious respiratory disease (CIRD) is a syndrome where multiple viral and bacterial pathogens are involved sequentially or synergistically to cause illness. There is limited information regarding the prevalence of pathogens related to CIRD in the United States as well as the role of co-infections in the pathogenesis of the syndrome. We aimed to conduct a comprehensive etiologic and epidemiologic study of multiple CIRD agents in a diverse dog population using molecular methods and statistical modeling analyses. In addition, a novel probe-based multiplex real-time PCR was developed to simultaneously detect and differentiate two species of Mycoplasma (M. canis and M. cynos). Canine adenovirus, canine distemper virus, canine parainfluenza virus, coronavirus, influenza A virus (H3N2 and H3N8), Bordetella bronchiseptica, M. canis, M. cynos and Streptococcus equi subsp. zooepidemicus were investigated in specimens from clinically ill and asymptomatic dogs received at the Athens Veterinary Diagnostic Laboratory. Results showed low occurrence of classical CIRD agents such as B. bronchiseptica, canine adenovirus and distemper virus, while highlighting the potential role of emerging bacteria such as M. canis and M. cynos. Statistical modeling analyses of CIRD pathogens emphasized the impact of co-infections on the severity of clinical presentation, and showed that host factors, such as animal age, are the most important predictors of disease severity. This study provides new insights into the current understanding of the prevalence and role of co-infections with selected viruses and bacteria in the etiology of CIRD, while underscoring the importance of molecular diagnosis and vaccination against this disease.

Highlights

  • For M. canis the limit of detection (LOD) was equivalent to 2.6 colony-forming unit (CFU)/reaction, equivalent to approximately 2.6 copies of M. canis genome per reaction

  • We found a low occurrence of classical Canine infectious respiratory disease (CIRD) pathogens such as B. bronchiseptica, canine adenovirus (CAV) and canine distemper virus (CDV), while identifying a higher than expected detection of bacterial agents such as M. canis and M. cynos

  • The low detection rate of traditional CIRD agents such as B. bronchiseptica, CAV and CDV might be associated with the extensive vaccination programs adopted in the United States, which may have reduced the circulation of these pathogens in the canine population

Read more

Summary

Introduction

Canine infectious respiratory disease (CIRD), known as “Kennel cough”, is an endemic syndrome with multiple viral and bacterial pathogens being involved in disease causation [1]. Detection of canine respiratory pathogens and their effect in co-infections. Common clinical signs include nasal discharge, coughing, respiratory distress, fever, lethargy and lower respiratory tract infections [1, 3,4,5]. The clinical signs caused by the different pathogens associated with this syndrome are similar, which makes differential diagnosis challenging. Vaccination plays an important role in managing CIRD, and as such, several mono and multivalent vaccines are available [6]; despite the widespread use of vaccines to prevent CIRD, clinical disease is still common in vaccinated dogs [2, 6]. Vaccines are commercially available for some, but not all pathogens, which may explain the occasional lack of protection

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call