Abstract
Rare-earth-based triangular lattice materials are extremely attractive for studying unconventional magnetism. Here, we report the magnetic properties of layered CsNdSe2 based on direct current (DC) and alternating current (AC) susceptibility measurements down to 0.04 K. While the AC susceptibility at the zero DC field shows a broad hump below 0.5 K, there is no sign of any long-range magnetic ordering. Quantitative analysis of the DC magnetic susceptibility gives the negative Curie-Weiss (CW) temperature θCW < 0 in all directions, indicating antiferromagnetic interaction between Nd ions. Of particular interest is the low temperature magnetic susceptibility, which reflects the effective spin-1/2 state with θcwa/θcwc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ heta }_{{{{{{{{\\rm{cw}}}}}}}}}^{a}/{\ heta }_{{{{{{{{\\rm{cw}}}}}}}}}^{c}$$\\end{document} > 3. The estimated exchange interactions are Ja/kB= 1.42 K (in-plane) and Jc/kB= 0.44 K (out-of-plane), pointing to the anisotropic magnetism. First-principles calculations that include spin-orbit coupling and Coulomb correlations reveal multiple states with zero net magnetization for CsNdSe2. Both experiment and simulation strongly suggest CsNdSe2 has the spin liquid ground state with effective spin-1/2. Application of a magnetic field can induce long-range antiferromagnetic ordering with the maximum transition temperature around 0.3 K, in further support of the zero-field spin liquid state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.