Abstract
Aims: Candida albicans is an important human fungal pathogen in clinical settings. It possesses a wide spectrum of virulence traits, including but not limited to the production of Secreted Aspartic Proteases (SAPs), to invade host cells under predisposing conditions. The aims of the present study were to investigate the functional role of C. albicans SAP7 in invasion ability. Methods: The present study was carried out to construct C. albicans sap7Δ/Δ mutant strain using a PCR-based gene disruption method. The behaviors of this SAP7 knockout strain was evaluated and compared with the wild type and SAP7 complemented strains between human oral epithelial cells with respect to endocytosis, invasion, and tissue damage. Results: Compared with the wild type C. albicans strain, a 52% reduction in the endocytosis of the sap7Δ/Δ mutant strain by oral epithelial cells was observed, as well as a 25% attenuation of internalization, and a 27% reduction of tissue damage (P<0.05). Conclusion: Our data clearly demonstrates that C. albicans SAP7 contributes to tissue invasion into human oral epithelial cells which warrant further investigations as potential targets for antifungal interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.