Abstract
In the present work, we studied the in vitro immunomodulatory properties of double-stranded Candida albicans DNA and its protective effect in murine disseminated candidiasis. DNA induced the production of TNF-α by peritoneal macrophages and splenocytes in vitro through a chloroquine-dependent mechanism. Yeast DNA acted synergistically with IFN-γ in triggering the secretion of nitric oxide by macrophages and enabled them to stimulate the proliferation of T cells in response to soluble anti-CD3. The effect of DNA on splenocytes is associated with an enhanced synthesis of IFN-γ, IL-2 and IL-10. In vivo, DNA decreased the mortality and lowered the kidney contamination in mice intraperitoneally inoculated with C. albicans simultaneously with an increase in the specific proliferative response and cytokine production. The present results indicate that C. albicans DNA can provide protection against disseminated infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.