Abstract

Exosomes secreted by cancer-associated fibroblasts (CAFs) play a critical part in cancer progression. This study aimed to explore the effects of CAF-exosomes on gastric cancer (GC) cell metastasis. AGS and HGC-27 cells were treated with exosomes and cell viability, migration, and invasion were evaluated using Cell-Counting Kit-8 and Transwell assays. Exosome-regulated mRNAs were explored using quantitative real-time PCR. The relationship between interleukin (IL)32 and estrogen receptor 1 (ESR1) was evaluated using co-immunoprecipitation and dual-luciferase reporter assays. The results of this study show that CAF-derived exosomes promote GC cell viability, migration, and invasion. Exosome treatment increased the levels of IL32, which interacted with ESR1 and negatively regulated ESR1 levels. Rescue experiments were conducted to demonstrate that CAF-exosomes promoted biological behaviors of GC cells by upregulating IL32 and downregulating ESR1 expression. In conclusion, CAF-derived exosomes promote GC cell viability, migration, and invasion by elevating the IL32/ESR1 axis, suggesting a novel strategy for metastatic GC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call