Abstract
In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1--0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.