Abstract

Recently, hypoglycemic drugs belonging to sodium-glucose cotransporter 2 inhibitors (SGLT2i) have generated significant interest due to their clear cardiovascular benefits for heart failure with preserved ejection fraction (HFpEF) since there are no effective drugs that may improve clinical outcomes for these patients over a prolonged period. But, the underlying mechanisms remain unclear, particularly its effects on ferroptosis, a newly defined mechanism of iron-dependent non-apoptotic cell death during heart failure (HF). Here, with proteomics, we demonstrated that ferroptosis might be a key mechanism in a rat model of high-salt diet-induced HFpEF, characterized by iron overloading and lipid peroxidation, which was blocked following treatment with canagliflozin. Data are available via ProteomeXchange with identifier PXD029031. The ferroptosis was evaluated with the levels of acyl-CoA synthetase long-chain family member 4, glutathione peroxidase 4, ferritin heavy chain 1, transferrin receptor, Ferroportin 1, iron, glutathione, malondialdehyde, and 4-hydroxy-trans-2-nonenal. These findings highlight the fact that targeting ferroptosis may serve as a cardioprotective strategy for HFpEF prevention and suggest that canagliflozin may exert its cardiovascular benefits partly via its mitigation of ferroptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.