Abstract

We validated a novel custom simulator constructed using a vibration transducer transmitting simulated reaming vibrations to a powered nonwearing reamer tip through a 3D-printed glenoid. Validation and system fidelity were evaluated by 9 fellowship-trained shoulder surgeon experts performing a series of simulated reamings. We then completed the validation process through a questionnaire focused on experts' experience with the simulator. Experts correctly identified 52% ± 8% of surface profiles and 69% ± 21% of cartilage layers. Experts identified the vibration interface between simulated cartilage and subchondral bone (77% ± 23% of the time), indicating high fidelity for the system. An interclass correlation coefficient for experts' reaming to the subchondral plate was 0.682 (confidence interval 0.262-0.908). On a general questionnaire, the perceived utility of the simulator as a teaching tool was highly ranked (4/5), and experts scored "ease of instrument manipulation" (4.19/5) and "realism of the simulator" (4.11/5) the highest. The mean global evaluation score was 6.8/10 (range 5-10). We examined a simulated glenoid reamer and feasibility of haptic vibrational feedback for training. Experts validated simulated vibration feedback for glenoid simulation reaming, and the results suggested that this may be a useful additional training adjuvant. Level II, prospective study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call