Abstract

Increasingly, exoskeletons are becoming a valuable tool for prevention technicians to promote occupational health and reduce the risk of musculoskeletal disorders in industry. However, the effective implementation of industrial exoskeletons is a complex challenge. Deciding whether these devices are the optimal solution to the detected ergonomic risks at a specific workstation is not straightforward. This study presents the modelling of three commercial passive exoskeletons, one for lumbar and two for shoulder risk reduction, to be considered in the musculoskeletal risk assessment of industrial workstations. The presented modelling considers the forces and moments applied by exoskeletons to the body using the Forces ergonomic method, providing the musculoskeletal risk for each joint based on inertial motion capture data registered at each workstation. This approach is exemplified on simulated and actual production workstations. The results reveal that the modelling application allows an objective understanding of the biomechanical effects of exoskeletons. Modelling establishes a predictive tool to assess and make decisions regarding the suitability of the exoskeleton prior to implementation at a workstation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.