Abstract

Land cover change is a key component of anthropogenic global environmental change, contributing to changes in environmental conditions of habitats. Deforestation is globally the most widespread and anthropogenically driven land cover change leading to conversion from closed forest to open non-forest habitat. This study investigates the relative roles of geographic features, characteristics of species climatic niche and species traits in determining the ability of open-habitat plant species to take advantage of recently opened habitats. We use current occurrence records of 18 herbaceous, predominantly open-habitat species of the genus Acaena (Rosaceae) to determine their prevalence in recently opened habitat. We tested correlation of species prevalence in anthropogenically opened habitat with (i) geographic features of the spatial distribution of open habitat, (ii) characteristics of species climatic niche, and (iii) species traits related to dispersal. While primary open habitat (naturally open) was characterised by cold climates, secondary open habitat (naturally closed but anthropogenically opened) is characterised by warmer and wetter conditions. We found high levels of variation in the species prevalence in secondary open habitat indicating species differences in their ability to colonise newly opened habitat. For the species investigated, geographical features of habitat and climatic niche factors showed generally stronger relationships with species prevalence in secondary open habitat than functional traits. Therefore, for small herbaceous species, geographical features of habitat and environmental factors appear to be more important than species functional traits for facilitating expansion into secondary open habitats. Our results suggested that the land cover change might have triggered the shifts of factors controlling open-habitat plant distributions from the competition with forest trees to current environmental constraints.

Highlights

  • The global land surface has been substantially modified by human activity

  • Climate—The climate associated with open habitats in New Zealand generally has shifted from cold to warm conditions since the forest clearances following human settlement (Fig 2; note that the temperature axis is negatively correlated with Mean Annual Temperature and Minimum Temperature of Coldest month)

  • Our main findings are; 1) open habitat was absent from warmer regions across New Zealand in pre-human times but it is available in these climates ; 2) open habitat is available to a much larger extent in wetter regions than it was in prehuman times; 3) Secondary open habitat is generally located in warmer regions than primary open habitat; 4) Geographical features of species habitat and climatic niche factors showed stronger relationships with the species’ prevalence in secondary open habitat than functional traits associated with dispersal

Read more

Summary

Introduction

The global land surface has been substantially modified by human activity. In the last two decades alone, c. One-tenth (3.3 million square km) of global wilderness areas was lost [1]. Colonising new habitat and a Marsden grant by Royal society Te Aparangi (https://royalsociety.org.nz/what-we-do/funds-andopportunities/marsden) to WGL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.