Abstract

QM/NMR-DFT (quantum mechanics combined with nuclear magnetic resonance parameters calculated by density functional theory approximations) studies allowed us to link two stereoclusters separated by two methylene groups present in the new meroditerpenes halioxepine B (2) and halioxepine C (3) and the known halioxepine (1), isolated from two Indonesian sponges of the genus Haliclona (Reniera). DP4 and DP4+ probabilities were used to discriminate the two diastereotopic arrangements of the two stereoclusters, whose unconnected relative configurations were determined by ROESY and J-based configurational analysis. To confirm the DFT studies, the full relative configuration of 1 was deduced using a mixture of benzene-d6 and pyridine-d5 as the NMR solvent. ROESY measurements connected the two stereoclusters and demonstrated that DFT calculations accurately predict the configuration when two methylenes separate the two stereoclusters. The different arrangements of the distant stereoclusters C-1/C-2/C-7 and C-10/C-15 for compounds 2 and 3 were deduced by DFT calculations and explained the opposite optical rotations observed for the two compounds. Halioxepines B (2) and C (3) display moderate cytotoxicity against different human cancer cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.