Abstract

The aggregation behavior of sodium dodecyl sulfate (SDS) was studied in an aqueous solution in the presence of increasing concentrations of selected sodium 1-alkylsulfonates, namely sodium 1-octanesulfonate, sodium 1-decanesulfonate, and sodium 1-dodecanesufonate. The critical micelle concentration (CMC) of SDS was determined by conductivity and fluorescence intensity measurements. The steady-state fluorescence quenching experiments with pyrene as a fluorescent probe were performed to obtain micellar aggregation numbers (Nagg) of the surfactant. The thermodynamic parameters of micellization (ΔGmic0 for all studied systems; ΔHmic0 and ΔSmic0 for sodium 1-dodecanesufonate) have been determined and compared. The influence of alkyl chain length and concentration of the selected sodium 1-alkylsulfonates on the values of CMC, Nagg, ΔGmic0, ΔHmic0, and ΔSmic0 of SDS has been discussed. As it was found, all selected for the experiments electrolytes decrease significantly the CMC of the surfactant, while an opposite effect is observed for Nagg values. The obtained experimental results have been supported by theoretical calculations. Interestingly, it has been proven that solely the molecules of sodium 1-dodecanesufonate (of the same carbon chain length) may act as the SDS mimetics – they are not recognized by SDS as the ones with a different structure and consequently are allowed to participate in the formation of the surfactant’s micelles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.