Abstract
Although rainwater harvesting (RWH) schemes have gradually gained more credibility and popularity in recent times, efficient utilisation and larger scale implementation of multi-purpose RWH are still a challenging task. This paper aims to explore the potential of using smart RWH schemes and their impact on the efficiency improvement in integrated urban water systems (UWS). The smart RWH scheme analysed here is capable of proactively controlling the tank water level to ensure sufficient spare storage is maintained at all times that accommodates the runoff from storm events. The multi-purpose RWH tank can mitigate local floods during rainfall events and supply harvested rainwater to non-potable residential water consumption. Optimal design parameters of the smart RWH scheme are also identified to achieve the best operational performance of the UWS. WaterMet2 model is used to assess the performance of the UWS with smart RWH schemes. The efficiency of the proposed methodology is demonstrated through modelling a real case of integrated UWS. The results obtained indicate that utilisation of smart RWH with an optimally sized tank, compared to the corresponding conventional RWH, is able to significantly improve the UWS efficiency in terms of mitigation of local flooding and reliability of water supply from harvested rainwater.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have