Abstract

We examine the question of whether quantum mechanics places limitations on the ability of small quantum devices to learn. We specifically examine the question in the context of Bayesian inference, wherein the prior and posterior distributions are encoded in the quantum state vector. We conclude based on lower bounds from Grover’s search that an efficient blackbox method for updating the distribution is impossible. We then address this by providing a new adaptive form of approximate quantum Bayesian inference that is polynomially faster than its classical anolog and tractable if the quantum system is augmented with classical memory or if the low–order moments of the distribution are protected through redundant preparation. This work suggests that there may be a connection between fault tolerance and the capacity of a quantum system to learn from its surroundings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.