Abstract
Recently, the adsorption and dissociation of oxygen molecule on a metal-free catalyst has attracted considerable attention due to the fundamental and industrial importance. In the present work, we have investigated the adsorption and dissociation of O2 molecule on pristine and silicon-doped graphene, using density functional theory calculations. We found that O2 is firstly adsorbed on Si-doped graphene by [2+1] or [2+2] cycloaddition, with adsorption energies of −1.439 and −0.856eV, respectively. Following this, the molecularly adsorbed O2 can be dissociated in different pathways. In the most favorable reaction path, the dissociation barrier of adsorbed O2 is significantly reduced from 3.180 to 0.206eV due to the doping of silicon into graphene. Our results may be useful to further develop effective metal-free catalysts for the oxygen reduction reactions (ORRs), thus greatly widening the potential applications of graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.