Abstract

Many works, aiming to explain the origin of dark matter or dark energy, consider the existence of hidden (brane)worlds parallel to our own visible world — our usual Universe — in a multidimensional bulk. Hidden braneworlds allow for hidden copies of the Standard Model. For instance, atoms hidden in a hidden brane could exist as dark matter candidates. As a way to constrain such hypotheses, the possibility for neutron–hidden neutron swapping can be tested thanks to disappearance-reappearance experiments also known as passing-through-walls neutron experiments. The neutron-hidden neutron coupling [Formula: see text] can be constrained from those experiments. While [Formula: see text] could be arbitrarily small, previous works involving a [Formula: see text] bulk, with DGP branes, show that [Formula: see text] then possesses a value which is reachable experimentally. It is of crucial interest to know if a reachable value for [Formula: see text] is universal or not and to estimate its magnitude. Indeed, it would allow, in a near future, to reject definitively — or not — the existence of hidden braneworlds from experiments. In the present paper, we explore this issue by calculating [Formula: see text] for DGP branes, for [Formula: see text], [Formula: see text] and [Formula: see text] bulks. As a major result, no disappearance-reappearance experiment would definitively universally rules out the existence of hidden worlds endowed with their own copy of Standard Model particles, except for specific scenarios with conditions reachable in future experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call