Abstract

Summary Expanding decarbonization efforts beyond the power sector are contingent on cost-effective production of energy carriers, like H2, with near-zero life-cycle carbon emissions. Here, we assess the levelized cost of continuous H2 supply (95% availability) at industrial-scale quantities (∼100 tonnes/day) in 2030 from integrating commodity technologies for solar photovoltaics, electrolysis, and energy storage. Our approach relies on modeling the least-cost plant design and operation that optimize component sizes while adhering to hourly solar availability, production requirements, and component inter-temporal operating constraints. We apply the model to study H2 production costs spanning the continental United States and, through extensive sensitivity analysis, explore system configurations that can achieve $2.5/kg levelized costs or less for a range of plausible 2030 technology projections at high-irradiance locations. Notably, we identify potential sites and system configurations where PV-electrolytic H2 could substitute natural gas-derived H2 at avoided CO2 costs (≤$120/ton), similar to the cost of deploying carbon capture and sequestration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.