Abstract

External-cavity lasers are usually used for chaos encryption in optical chaos-based communication systems. The external-cavity round-trip time (the time delay in the laser dynamics) is often regarded as an additional key to encode messages, which is a critical security parameter. The feasibility of identifying the time delay has been a crucial issue in chaotic optical communication. Some researchers propose that the time delay can be hidden by modulating the value of feedback strength or increasing the number of feedback cavities. In this paper, we experimentally and numerically demonstrate that the time delay signatures cannot be concealed in optical feedback semiconductor lasers. Whether single or double optical feedback, the time delay signatures can all be identified by the power spectrum analysis method. Furthermore, adjusting the feedback strength, the pumping current and the time-delay value, we find that the extraction of the time delay signatures still cannot be influenced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.