Abstract

As a quaternary copper-based semiconductor, Cu2ZnSnS4 (CZTS) is drawing growing attention and is anticipated as a promising photocatalyst, thanks to its large absorption coefficient, exceptional photostability, and theoretical power conversion efficiency. However, CZTS has never been used as an activator of H2O2 for the degradation of refractory organic pollutants. In this study, the synthesis of CZTS nanoparticles obtained with diverse morphologies and crystallinities using solvents of deionized water (CZTS-W) and ethylene glycol (CZTS-EG) was examined in the activation of H2O2 to degrade sulfadiazine (SDZ). The results revealed that CZTS coupled with H2O2 could be an effective system for the degradation of SDZ. Compared to CZTS-EG, CZTS-W presented higher reusability in consecutive cycles with negligible leaching of copper. Reactive oxygen species quenching tests and electron paramagnetic resonance analyses illustrated that •O2−, •OH, and 1O2 contributed to the degradation of SDZ, and 1O2 prevailed over •O2− and •OH. The mechanistic investigation showed that efficient degradation could be associated to the effective recycling of Cu(II)/Cu(I) and low-valent/high-valent sulfur. Also, the degradation pathways of SDZ have been proposed through the detection of intermediate products. This study manifests that CZTS synthesized using deionized water is encouraging for the elimination of organic pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.