Abstract

Objective: This study qualitatively and quantitatively evaluated the transmission of light through a collagen membrane and the consequent local bone formation in a critical bone defect in vitro and in an animal model. Background: Currently, bone substitutes and collagen membranes are used to promote new bone formation; however, when associated with photobiomodulation, biomaterials can act as a barrier, hindering the passage of light radiation to the area to be treated. Methods: Light transmittance was evaluated in vitro with a power meter and a 100 mW, 808 nm laser source with and without membrane. Twenty-four male rats received a critical surgical defect of 5 mm in diameter in the calvarial bone, subsequently a biomaterial (Bio-Oss; Geistlich®, Switzerland) was applied, and the animals were divided into the following three groups: G1-collagen membrane and no irradiation; G2-collagen membrane and photobiomodulation (irradiation with 4 J of 808 nm); and G3-photobiomodulation (4 J) followed by a collagen membrane. Histomophometric analyses were performed at 7 and 14 days after euthanasia. Results: The membrane reduced the light transmittance (808 nm) by an average of 78%. Histomophometric analyses showed significant differences in new blood vessels on day 7 and bone neoformation on day 14. Irradiation without membrane interposition resulted in a 15% more neoformed bone compared with the control (G1), and 6.5% more bone compared with irradiation over the membrane (G2). Conclusions: The collagen membrane interferes with light penetration during photobiomodulation, decreases light dosimetry on the wound area, and interferes with bone neoformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call