Abstract

Gravitational waves carry away both energy and angular momentum as binary black holes inspiral and merge. The relative efficiency with which they are radiated determines whether the final black hole of mass M{sub f} and spin S{sub f} saturates the Kerr limit ({chi}{sub f}{identical_to}S{sub f}/M{sub f}{sup 2}{<=}1). Extrapolating from the test-particle limit, we propose expressions for S{sub f} and M{sub f} for mergers with initial spins aligned or anti-aligned with the orbital angular momentum. We predict the the final spin at plunge for equal-mass nonspinning binaries to better than 1%, and that equal-mass maximally spinning aligned mergers lead to nearly maximally spinning final black holes ({chi}{sub f}{approx_equal}0.9988). We also find black holes can always be spun up by aligned mergers provided the mass ratio is small enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.