Abstract

The spin properties of merging black holes observed with gravitational waves can offer novel information about the origin of these systems. The magnitudes and orientations of black hole spins offer a record of binaries’ evolutionary history, encoding information about massive stellar evolution and the astrophysical environments in which binary black holes are assembled. Recent analyses of the binary black hole population have yielded conflicting portraits of the black hole spin distribution. Some works suggest that black hole spins are small but nonzero and exhibit a wide range of misalignment angles relative to binaries’ orbital angular momenta. Other works conclude that the majority of black holes are nonspinning while the remainder are rapidly rotating and primarily aligned with their orbits. We revisit these conflicting conclusions, employing a variety of complementary methods to measure the distribution of spin magnitudes and orientations among binary black hole mergers. We find that the existence of a subpopulation of black holes with vanishing spins is not required by current data. Should such a subpopulation exist, we conclude that it must contain ≲60% of binaries. Additionally, we find evidence for significant spin–orbit misalignment among the binary black hole population, with some systems exhibiting misalignment angles greater than 90°, and see no evidence for an approximately spin-aligned subpopulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call