Abstract

Abstract Cold temperatures negatively impact crop yield and quality, posing significant limitations to the advancement of the vegetable industry. MYB transcription factors are pivotal in enhancing plant resilience against various abiotic stresses, including low-temperature stress. Pepper (Capsicum annuum L.) is a nutrient-rich vegetable crop sensitive to low temperatures. This study aimed to determine the function of CaMYB80 in the cold stress response of pepper through virus-induced silencing. The study also conducted heterologous expression of CaMYB80 in Arabidopsis and tomato plants. The results showed that CaMYB80 could respond to low-temperature stress in pepper. CaMYB80 was localized in the nucleus and cytoplasm and exhibited transcriptional activation ability. Moreover, CaMYB80 silencing decreased cold tolerance in pepper, while its heterologous overexpression increased cold tolerance in Arabidopsis and tomato. Further analysis showed that CaMYB80 interacted with CaPOA1 (peroxidase N1-like). Similarly, the expression of CaPOA1 also responded to low-temperature stress. Overexpression of CaPOA1 enhanced freezing tolerance in Arabidopsis, while its silencing reduced cold stress tolerance in pepper. Furthermore, overexpression of CaMYB80 in Arabidopsis and tomato could increase the activity of peroxidases and the expression levels of genes in the ICE-CBF-COR (inducer of CBF expression, C-repeat binding factor, cold-responsive) regulatory network. In conclusion, our research results indicate that CaMYB80 enhances pepper cold tolerance by interacting with CaPOA1 to increase peroxidase activity and influence the expression of ICE-CBF-COR related genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call