Abstract

The role of cyclic AMP (cAMP) as second messenger in erythropoiesis has been suggested in the early 1980s. However, careful analysis showed that cAMP is not generated in direct response to the main erythropoiesis-controlling cytokines such as erythropoietin (Epo). As a result, cAMP disappeared from the central stage in research of erythropoiesis. Instead, other signal transduction pathways, including the Ras/extracellular regulated kinase (ERK)-pathway, the phosphatidylinositol 3-kinase (PI3K) and the signal transducer and activator of transcription (STAT5)-pathways, have been found and explored. In concert, these signaling pathways control the transcriptional machinery of erythroid cells. Although cAMP is not directly generated in response to Epo stimulation, it has recently been demonstrated that increased cAMP-levels and in particular the cAMP-dependent protein kinase A (PKA) can modulate erythroid signal transduction pathways. In some cases, like the ERK-signaling pathway, PKA affects signal transduction by regulating the balance between specific phosphatases and kinases. In other cases, such as the STAT5 pathway, PKA enhances Epo signaling by inducing recruitment of additional co-regulators of transcription. In addition to STAT5, PKA also activates other transcription factors that are required for erythroid gene expression. This review discusses the impact of cAMP/PKA on Epo-mediated signaling pathways and summarizes the role of cAMP in malignant erythropoiesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call