Abstract
With the rapid advancement of multimedia technologies, there is a growing demand for reliable methods to verify image integrity. Camera model identification, a passive approach aiming to determine the specific capturing device model, has garnered considerable attention in the field of source camera forensics. In this paper, we first propose a novel patch selection method that enhances the diversity of training data by utilizing the uniform local binary pattern operator to reveal spatial textual information. Secondly, we introduce a complex dual-path enhanced ConvNeXt network for camera model identification, effectively leveraging the multi-frequency information present in the image. Notably, our network demonstrates the ability to learn camera model-related features without relying on a residual prediction module. Finally, extensive experimental results on both Dresden and Vision datasets shown that the proposed network outperforms several state-of-the-art methods in both teams of identification accuracy and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.