Abstract
We present a novel method for obtaining a 3D absorption map of a tissue-like turbid slab in the near-infrared spectral range by tomosynthesis. Transmittance data are obtained for a large number of oblique projection directions by scanning a cw laser source across the surface of the slab and by using a CCD camera for spatially resolved light detection. A perturbation model of light transport is used to convert the intensity maps for the different projections into absorption maps. By applying the tomosynthesis approach to these new maps, 3D absorption information on embedded inclusions has been obtained for the first time. The number and the positions of the lateral offset detectors have been optimized by employing a structural similarity index for comparison of the reconstructed with the true absorption data. We present 3D reconstruction of absorption maps using both Monte Carlo simulations and experiments on phantoms with breast-like optical properties. A comparison with conventional 3D reconstruction by a finite element approach shows the superior location performance of tomosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.