Abstract
The quantum efficiency of silicon photodiodes and factors that might be responsible for the drop in quantum efficiency in the near-infrared spectral range were analyzed. It was shown that poor reflectivity from the rear surface of the die could account for a decrease in Si photodiode quantum efficiency in near-infrared spectral range by more than 20%. The photodiode quantum efficiency was modeled with an appropriate representation for the carrier-collection efficiency dependence on the die penetration depth. A corrected analytical expression for calculating the photodiode quantum efficiency is given. Some methods to improve the quantum efficiency of silicon photodiodes in near-infrared spectral range are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.