Abstract

Substrate autoregulation of glucose transporter-1 (GLUT-1) mRNA and protein expression provides vascular endothelial and smooth muscle cells a sensitive mechanism to adapt their rate of glucose transport in response to changing glycemic conditions. Hyperglycemia-induced downregulation of glucose transport is particularly important in protecting these cells against an excessive influx of glucose and consequently increased intracellular protein glycation and generation of free radicals; both are detrimental in the development of vascular disease in diabetes. We aimed to investigate the molecular mechanism of high glucose-induced downregulation of GLUT-1 mRNA expression in primary bovine aortic vascular endothelial (VEC) and smooth muscle (VSMC) cell cultures. Using RNA mobility shift, UV cross-linking, and in vitro degradation assays, followed by mass-spectrometric analysis, we identified calreticulin as a specific destabilizing trans-acting factor that binds to a 10-nucleotide cis-acting element (CAE(2181-2190)) in the 3'-untranslated region of GLUT-1 mRNA. Pure calreticulin accelerated the rate of GLUT-1 mRNA-probe degradation in vitro, whereas overexpression of calreticulin in vascular cells decreased significantly the total cell content of GLUT-1 mRNA and protein. The expression of calreticulin was augmented in vascular cells exposed to high glucose in comparison with low-glucose conditions. Similarly, increased expression of calreticulin was observed in aortae of diabetic Psammomys obesus in comparison with normoglycemic controls. These data suggest that CAE(2181-2190)-calreticulin complex, which is formed in VSMC and VEC exposed to hyperglycemic conditions, renders GLUT-1 mRNA susceptible to degradation. This interaction underlies the process of downregulation of glucose transport in vascular cells under high-glucose conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call