Abstract

Calponin 3 (CNN3) is involved in the proliferation and invasion of cervical cancer and osteosarcoma cells. However, the role of CNN3 in glioma tumorigenesis remains to be elucidated. CNN3 mRNA expression in normal brain tissue and gliomas, including glioblastoma multiforme and lower-grade glioma, was analyzed using GEPIA 2 and Oncomine. CNN3 levels in glioma tissues were identified using immunohistochemical data provided by the Human Protein Atlas website. The relationship between CNN3 mRNA expression and clinical characteristics of patients with glioma was analyzed using the Oncomine database and The Cancer Genome Atlas. The diagnostic value of CNN3 expression in glioma was analyzed using receiver operating characteristic analysis according to The Cancer Genome Atlas and Genotype-Tissue Expression data. The relationship between CNN3 and prognosis was analyzed using GEPIA 2. The function of CNN3 knockdown in glioma cell lines was analyzed using cell proliferation, Transwell, and Western blot assays. Both mRNA and protein levels of CNN3 were distinctly higher in lower-grade glioma and glioblastoma multiforme tissues than those in normal brain tissues, particularly glioblastoma. A higher CNN3 mRNA level had significant relationship with higher World Health Organization grade, isocitrate dehydrogenase wild-type status, and 1p/19q noncodeletion. CNN3 mRNA expression is a highly accurate marker for the diagnosis of glioma. Patients with glioma in the high-CNN3 group had significantly lower disease-free survival and survival rates. In addition, CNN3 silencing significantly inhibited cell proliferation, migration, invasion, and the phosphorylation of P65 NF-κB. CNN3 expression is increased in glioma, particularly glioblastoma. Silencing CNN3 expression inhibited the proliferation, migration, and invasion of glioma cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.