Abstract
Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay. EtOH at low to moderate (25-50mM) concentrations induced damaging effects in the motoneuronal scaffold which involved activation of proteases like μ-calpain and caspase-3. Caspase-8 was seen only at higher (100mM) EtOH concentration. Further, pretreatment with calpeptin, a potent calpain inhibitor, confirmed the involvement of active proteases in EtOH-induced damage to motoneurons. The lysosomal enzyme cathepsin D was also elevated in the motoneurons by EtOH, and this effect was significantly attenuated by inhibitor treatment. Overall, EtOH exposure rendered spinal motoneurons vulnerable to damage, and calpeptin provided protection, suggesting a critical role of calpain activation in EtOH-induced alterations in spinal motoneurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.