Abstract

Three photosensitive tert-butylcalix[n]arene (TBC[n], n = 4, 6, 8)-protected titanium-oxo clusters (TOCs), formulated as [Ti4(μ3-O)2(TBC[4])2(OiPr)4(DEF)2]·DEF (1, TBC[4]-Ti4, DEF = N,N-diethylformamide), [Ti4(μ4-O)TBC[6](OCH3)9]·H2O (2, TBC[6]-Ti4), and [Ti4(μ3-O)2(OiPr)4TBC[8](DEF)2]·DEF (3, TBC[8]-Ti4), were successfully synthesized and characterized. Because of the generation of charge transfer from TBC[n] to the TiO core, the three TBC[n]-decorated TOCs show a broadened visible-light absorption and narrowed optical band gap based on the UV-visible spectra and density functional theory calculations. The corresponding photosensitive electrodes prepared using these three TOCs exhibit stable photocurrent responses. Furthermore, their photocatalytic performances for hydrogen evolution and methylene blue degradation were evaluated, and all of the materials display excellent photocatalytic activity and stability. The calixarene-Ti coordination is therefore an effective strategy to enlarge the visible-light absorption band of Ti-O materials and improve their photoelectric/photocatalytic performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.