Abstract

Orthogonal superposition (OSP) rheology is an advanced rheological technique that involves superimposing a small-amplitude oscillatory shear deformation orthogonal to a primary shear flow. This technique allows the measurement of structural dynamics of complex fluids under non-linear flow conditions, which is important for the understanding and prediction of the performance of a wide range of complex fluids. The OSP rheological technique has a long history of development since the 1960s, mainly through the custom-built devices that highlighted the power of this technique. The OSP technique is now commercially available to the rheology community. Given the complicated design of the OSP geometry and the non-ideal flow field, users should understand the magnitude and sources of measurement error. This study presents calibration procedures using Newtonian fluids that includes recommendations for best practices to reduce measurement errors. Specifically, detailed information on the end-effect factor determination method, sample filling procedure, and identification of the appropriate measurement range (e.g., shear rate, frequency, etc.) are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.