Abstract

The European XFEL is a research facility that delivers extremely bright and short coherent X-ray pulses of tunable energy at MHz repetition rate, providing unprecedented capabilities to conduct scientific research across multiple domains. Among the suite of deployed detectors, several ePix100 modules, belonging to the family of ePix detectors developed at SLAC, are used. These charge-integrating hybrid pixel detectors offer single-photon resolution for energies above 2 keV and a dynamic range of 100 photons at 8 keV. Their low noise, small pixel size, compact dimensions, maneuverability and vacuum compatibility make them an attractive choice for some of the hard X-ray instruments at the European XFEL for imaging, spectroscopy, and scattering experiments.The European XFEL is committed to providing users with completely corrected detector data. To achieve this goal, periodic calibration procedures are conducted to generate calibration constants that allow the conversion of raw detector output into physically meaningful information through a series of successive data correction steps. In this work, an overview of the ePix100 calibration procedures and correction algorithms will be provided, with a focus on particularly relevant processes for this detector, such as common mode noise and charge sharing correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call