Abstract

The accuracy of three-axis magnetometers is limited by different scales, bias of each axis and nonorthogonality between axes, which is usually lower than that of scalar magnetometers. In this paper, the nonlinear least square method is proposed to calibrate three-axis magnetometers. The validity of this method was proved by simulation, in which the estimated parameters of the error model are close to prearranged parameters. In experiment, a three-axis fluxgate magnetometer (DM-050), a two dimensional nonmagnetic rotation equipment and a proton magnetometer (GSM-19T) were used. The scalar value of magnetic field was obtained by proton magnetometer and considered to be the true value. The calibration performance of unscented Kalman filter (UKF), two-step algorithm and nonlinear least square were compared. Experimental results show that the error average and standard deviation of nonlinear least square are the least among the three methods. After calibration, the average of scalar error is reduced from −76.2nT to −0.00093nT and the standard deviation is reduced from 10.832nT to 4.298nT. The results suggest an effective way for the calibration of three-axis fluxgate magnetometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.